МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Свердловской области Департамент образования Администрации города Екатеринбурга МАОУ СОШ № 16

PACCMOTPEHO

СОГЛАСОВАНО

УТВЕРЖДЕНО

Руководитель ШМО

учителей

естественнонаучных

предметов

Лупушор С.И.

Протокол № 1

от «27» августа 2025 г.

Заместитель директора А.А. Лобастова Н.А.

Заместитель директора АДиректор МАОУ СОШ № 16

Тимошкина А.С.

Приказ № 511-д

от «27» августа 2025 г.

РАБОЧАЯ ПРОГРАММА

элективного курса «Решение задач по физике повышенного уровня сложности»

для обучающихся 11 классов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа элективного курса «Решение задач по физике повышенного уровня сложности» ориентирована на обучающихся 11 классов и разработана на основе Федерального государственного образовательного стандарта среднего общего образования и авторской программы: Зорин Н. И. «Элективный курс «Методы решения физических задач»: 10-11 классы».

На изучение курса в 11 классе отводится 34 часа.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

личностные:

- готовность и способность к саморазвитию и личностному самоопределению;
- сформированность мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно смысловых установок, отражающих личностные и гражданские позиции в деятельности, правосознание, экологическую культуру;
- способность ставить цели и строить жизненные планы;
- способность к осознанию российской гражданской идентичности в поликультурном социуме.

МЕТАПРЕДМЕТНЫЕ:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системноинформационный анализ, моделирование и т. д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение самостоятельно приобретать новые знания, организовывать свою учебную деятельность, ставить цели, планировать, осуществлять самоконтроль и оценку результатов своей деятельности, предвидеть возможные результаты своей деятельности;
- умение устанавливать различия между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, выдвигать гипотезы для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разрабатывать теоретические модели процессов или явлений;
- умение воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать

полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

- выражать свои мысли и приобретать способность выслушивать собеседника, понимать его точку зрения, признавать право другого человека на свое мнение;
- развитие монологической и диалогической речи;
- осваивание приемов действия в нестандартных ситуациях, овладение эвристическими методами решения проблем; умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике;
- использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

ПРЕДМЕТНЫЕ

Ожидаемыми результатами занятий являются:

- выпускник расширит знания об основных алгоритмах решения задач, различных методах приемах решения задач;
- выпускник получит развитие познавательных интересов, интеллектуальных и творческих способностей на основе опыта самостоятельного приобретения новых знаний, анализа и оценки новой информации;
- выпускник сознательно самоопределится относительно профиля дальнейшего обучения или профессиональной деятельности;
- выпускник получит представление о роли физики в познании мира, физических и математических методах исследования.

Выпускник получит возможность научиться:

- анализировать физическое явление;
- проговаривать вслух решение;
- анализировать полученный ответ;
- классифицировать предложенную задачу;
- составлять простейших задачи;
- последовательно выполнять и проговаривать этапы решения задачи средней трудности;
- выбирать рациональный способ решения задачи;
- решать комбинированные задачи;
- владеть различными методами решения задач: аналитическим, графическим, экспериментальным и т.д.;
- владеть методами самоконтроля и самооценки.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

ВВЕДЕНИЕ

Правила и приемы решения физических задач

Что такое физическая задача? Физическая теория и решение задач. Составление физических задач. Основные требования к составлению задач. Общие требования при решении физических задач. Выполнение плана решения задачи. Анализ решения и оформление решения. Типичные недостатки при решении и оформлении решения задачи. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии. Методы размерностей, графические решения, метод графов и т.д.

Физика и физические величины

Физические измерения. Погрешности измерений. Универсальные физические константы. Операции над векторными величинами.

Скалярные и векторные величины. Действия над векторами. Задание вектора. Умножение вектора на скаляр. Сложение векторов. Проекции вектора на координатные оси и действия над векторами. Проекции суммы и разности векторов.

МЕХАНИКА

Кинематика

Перемещение. Скорость. Прямолинейное равномерное движение. Графическое представление движения. Средняя путевая и средняя скорость по перемещению. Мгновенная скорость.

Относительность механического движения. Радиус-вектор. Формула сложения перемещения.

Ускорение. Равноускоренное движение. Перемещение при равноускоренном движении. Свободное падение. Ускорение свободного падения. Начальная скорость. Движение тела брошенного вертикально вверх.

Движение тела, брошенного под углом к горизонту. Определение дальности полета, времени полета. Максимальная высота подъема тела при движении под углом к горизонту. Время подъема до максимальной высоты. Скорость в любой момент движения. Уравнение траектории движения.

Динамика

Системы отсчета. Законы Ньютона. Сила всемирного тяготения. Сила тяжести. Сила упругости. Сила трения. Вес тела.

Динамика материальной точки при движении по окружности. Период обращения и частота обращения. Циклическая частота. Угловая скорость.

Перемещение и скорость при криволинейном движении. Центростремительное ускорение. Закон Всемирного тяготения.

Статика и гидростатика

Условия равновесия тел. Момент силы. Центр тяжести тела. Виды равновесия тела. Давление в жидкости. Закон Паскаля. Гидравлический пресс. Сила Архимеда. Вес тела в жидкости. Условия плавания тел. Несжимаемая жидкость. Законы сохранения в механике

Импульс тела. Импульс силы. Явление отдачи. Замкнутые системы. Абсолютно упругое и неупругое столкновение.

Работа и энергия в механике. Закон сохранения механической энергии Потенциальная и кинетическая энергия. Полная механическая энергия.

ТЕРМОДИНАМИКА

Количество вещества. Масса и размер молекул. Основное уравнение МКТ. Энергия теплового движения молекул. Зависимость давления газа от концентрации молекул и температуры. Скорость молекул газа. Уравнение состояния идеального газа. Изопроцессы.

Внутренняя энергия одноатомного газа. Работа и количество теплоты. Первый закон термодинамики. Адиабатный процесс. Изменение внутренней энергии в процессе совершения работы. Тепловые двигатели.

ЭЛЕКТРОДИНАМИКА

Электростатика

Закон Кулона. Напряженность поля. Проводники в электрическом поле. Поле заряженного шара и пластины. Энергия заряженного тела в электрическом поле. Разность потенциалов. Электроемкость конденсатора. Энергия заряженного конденсатора.

Постоянный ток

Сила тока. Сопротивление. Закон Ома. Работа и мощность тока. Электродвижущая сила. Закон Ома для замкнутой цепи. Законы Кирхгофа. Электрический ток в металлах и электролитах. Электрический ток в газах, вакууме, полупроводниках.

МАГНИТНОЕ ПОЛЕ. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Магнитное поле тока. Магнитная индукция. Магнитный поток. Закон Ампера.

Сила Лоренца. Магнитные свойства вещества.

КОЛЕБАНИЯ И ВОЛНЫ

Свободные колебания. Превращение энергии. Вынужденные колебания. Переменный электрический ток. Волны.

ОПТИКА И КВАНТОВАЯ ФИЗИКА

Различные свойства электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Геометрическая оптика: зеркала, оптические схемы. Классификация задач по СТО и примеры их решения. Фотоэффект. Постулаты Бора. Атомное ядро. Радиоактивность.

Тематическое планирование 11 КЛАСС

No	Тема занятия	Кол-во
п/п		часов
	ТЕРМОДИНАМИКА	6
1	Внутренняя энергия. Теплопередача. Уравнение теплового	1
	баланса. Работа в термодинамике. Законы термодинамики.	
	Алгоритмы решения задач	
2	Методы решения задач на уравнение теплового баланса	1
3	Методы решения задач на законы термодинамики	1
4	Методы решения задач на определение параметров тепловых	1
	машин	
5	Решение комбинированных задач раздела «Термодинамика»	1
6	Решение комбинированных задач раздела «Термодинамика»	1
	ЭЛЕКТРОДИНАМИКА	11
	Электростатика (4 часа)	5
7	Электрическое поле. Конденсаторы. Алгоритмы решения задач	1
8	Методы решения задач на закон Кулона и электризация тел	1
9	Методы решения задач на принцип суперпозиции	1
10	Методы решения задач на определение параметров	1
	однородного электрического поля	
11	Решение комбинированных задач раздела «Электростатика»	1
	Постоянный ток	6
12	Законы постоянного тока. Алгоритмы решения задач	1
13	Методы решения задач на законы Ома для участка цепи и	1
	полной цепи	
14	Методы решения задач на соединение проводников	1
15	Методы решения задач на определение работы и	1
	мощности электрического тока	
16	Решение комбинированных задач раздела «Электродинамика»	1
17	Решение комбинированных задач раздела «Электродинамика»	1
	МАГНИТНОЕ ПОЛЕ. ЭЛЕКТРОМАГНИТНАЯ	8
	ИНДУКЦИЯ	
18	Характеристики магнитного поля. Алгоритмы решения задач	1
19	Методы решения задач на направления силовых линий	1
	магнитного поля, силы Лоренца и силы Ампера	
20	Методы решения задач на определение характеристик	1
	проводника, находящегося в магнитном поле	
21	Методы решения задач на движение заряженных частиц в	1
	магнитном поле	

22	Методы решения задач на правило Ленца, закон	1
	электромагнитной индукции	
23	Методы решения задач на определение энергии магнитного поля	1
24	Решение комбинированных задач раздела «Магнитное поле»	1
25	Решение комбинированных задач раздела «Магнитное поле»	1
	КОЛЕБАНИЯ И ВОЛНЫ	4
26	Характеристики механических и электромагнитных колебаний.	1
	Алгоритмы решения задач	
27	Методы решения задач на определение характеристик	1
	механических колебаний	
28	Методы решения задач на определение характеристик	1
	электромагнитных колебаний	
29	Решение комбинированных задач раздела «колебания и волны»	1
	ОПТИКА И КВАНТОВАЯ ФИЗИКА	3
30	Методы решения задач на законы геометрической оптики	1
31	Методы решения задач законы фотоэффекта	1
32	Методы решения задач на физику атома и атомного ядра	1
	ОБОБЩЕНИЕ	2
33	Контрольное тестирование	1
34	Контрольное тестирование	1

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Зорин Н. И. «Элективный курс «Методы решения физических задач»: 10-11 классы», М., ВАКО, 2017 г.

Бобошина С.Б. Справочник. 10-11 классы/С.Б. Бобошина.-М.: Издательство «Экзамен», 2019.

Гельфгат И.М., Гельденштейн Л.Э., Кирик Л.А. Решение ключевых задач по физике для профильной школы. 10-11 классы. - М.: ИЛЕКСА, 2015.

Громцева О.И. ЕГЭ. Физика. Полный курс. Самостоятельная подготовк к ЕГЭ/ О.И.Громцева.- 6-е изд.. перераб.и доп.- М.: Издательство «Экзамен», 2015.

Демидова М.Ю. ЕГЭ. Физика. 1000 задач с ответами и решениями /М.Ю.Демидова, В.А. Грибов, А.И.Гиголо.-М.: издательство «Экзамен», 2018.-430

Открытый банк заданий по физике для проведения ЕГЭ ФИПИ

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 303540294533635982749676679132712847518854643115

Владелец Тимошкина Анна Сергеевна Действителен С 14.03.2025 по 14.03.2026